common.qiHao common.drawNumber k3.kjDistribution k3.numberState k3.heTrend
1 2 3 4 5 6 k3.baoZi k3.sbt k3.duiZi 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
20190617025 3 3 3 1 1 3 3 2 2 1 0 1 4 71 56 8 7 30 15 0 5 10 2 6 16 73 28 69 35
20190617024 1 2 6 1 2 1 1 1 6 34 0 3 70 55 7 6 29 14 0 4 9 1 5 15 72 27 68 34
20190617023 3 4 5 4 2 3 4 5 4 33 0 2 69 54 6 5 28 13 2 3 8 0 4 14 71 26 67 33
20190617022 3 4 5 3 1 3 4 5 3 32 0 1 68 53 5 4 27 12 1 2 7 0 3 13 70 25 66 32
20190617021 2 2 5 2 2 2 1 5 5 2 31 1 0 67 52 4 3 26 11 0 1 6 14 2 12 69 24 65 31
20190617020 2 3 5 1 2 3 4 5 1 30 0 1 66 51 3 2 25 10 4 0 5 13 1 11 68 23 64 30
20190617019 1 6 6 1 1 1 3 5 6 2 29 1 0 65 50 2 1 24 9 3 6 4 12 0 10 67 22 63 29
20190617018 1 2 3 1 2 3 2 4 3 28 0 1 64 49 1 0 23 8 2 5 3 11 29 9 66 21 62 28
20190617017 1 1 3 1 2 4 3 1 3 2 27 2 0 63 48 0 9 22 7 1 4 2 10 28 8 65 20 61 27
20190617016 1 4 4 1 3 2 4 2 2 1 26 1 0 62 47 18 8 21 6 0 3 1 9 27 7 64 19 60 26
20190617015 1 4 6 1 2 1 4 1 6 25 0 3 61 46 17 7 20 5 1 2 0 8 26 6 63 18 59 25
20190617014 1 3 5 1 1 3 2 5 7 24 0 2 60 45 16 6 19 4 0 1 20 7 25 5 62 17 58 24
20190617013 2 3 5 2 2 3 1 5 6 23 0 1 59 44 15 5 18 3 2 0 19 6 24 4 61 16 57 23
20190617012 2 4 4 1 2 1 4 2 1 5 22 1 0 58 43 14 4 17 2 1 0 18 5 23 3 60 15 56 22
20190617011 1 3 5 1 1 3 2 5 4 21 0 1 57 42 13 3 16 1 0 11 17 4 22 2 59 14 55 21
20190617010 2 3 3 2 2 3 2 1 1 3 20 3 0 56 41 12 2 15 0 8 10 16 3 21 1 58 13 54 20
20190617009 4 5 5 1 7 4 4 5 2 2 19 2 0 55 40 11 1 14 24 7 9 15 2 20 0 57 12 53 19
20190617008 1 1 4 1 2 6 3 4 1 1 18 1 0 54 39 10 0 13 23 6 8 14 1 19 2 56 11 52 18
20190617007 1 5 6 1 5 2 1 5 6 17 0 1 53 38 9 3 12 22 5 7 13 0 18 1 55 10 51 17
20190617006 4 4 6 2 4 1 4 2 3 6 16 4 0 52 37 8 2 11 21 4 6 12 1 17 0 54 9 50 16
20190617005 3 3 6 1 3 3 2 1 2 6 15 3 0 51 36 7 1 10 20 3 5 11 0 16 2 53 8 49 15
20190617004 1 1 4 1 2 2 2 4 1 7 14 2 0 50 35 6 0 9 19 2 4 10 3 15 1 52 7 48 14
20190617003 4 5 5 4 1 1 4 5 2 6 13 1 0 49 34 5 19 8 18 1 3 9 2 14 0 51 6 47 13
20190617002 2 3 4 3 2 3 4 1 5 12 0 4 48 33 4 18 7 17 0 2 8 1 13 21 50 5 46 12
20190617001 3 4 5 2 1 3 4 5 4 11 0 3 47 32 3 17 6 16 2 1 7 0 12 20 49 4 45 11
20190616041 2 3 5 1 2 3 3 5 3 10 0 2 46 31 2 16 5 15 1 0 6 4 11 19 48 3 44 10
20190616040 1 3 5 1 3 3 2 5 2 9 0 1 45 30 1 15 4 14 0 6 5 3 10 18 47 2 43 9
20190616039 1 1 3 1 2 2 3 1 4 1 8 2 0 44 29 0 14 3 13 12 5 4 2 9 17 46 1 42 8
20190616038 4 6 6 2 1 2 4 3 6 2 7 1 0 43 28 24 13 2 12 11 4 3 1 8 16 45 0 41 7
20190616037 2 4 6 1 2 1 4 2 6 6 0 1 42 27 23 12 1 11 10 3 2 0 7 15 44 16 40 6
20190616036 1 3 3 1 1 3 2 1 1 4 5 1 0 41 26 22 11 0 10 9 2 1 12 6 14 43 15 39 5
20190616035 2 4 5 2 2 1 4 5 3 4 0 2 40 25 21 10 2 9 8 1 0 11 5 13 42 14 38 4
20190616034 2 3 5 1 2 3 5 5 2 3 0 1 39 24 20 9 1 8 7 0 2 10 4 12 41 13 37 3
20190616033 1 1 5 1 2 1 1 4 5 1 2 1 0 38 23 19 8 0 7 6 4 1 9 3 11 40 12 36 2
20190616032 2 3 6 3 2 3 3 2 6 1 0 8 37 22 18 7 4 6 5 3 0 8 2 10 39 11 35 1
20190616031 6 6 6 2 1 6 2 1 6 3 0 1 7 36 21 17 6 3 5 4 2 13 7 1 9 38 10 34 0
20190616030 2 5 6 1 2 5 1 5 6 35 0 6 35 20 16 5 2 4 3 1 12 6 0 8 37 9 33 53
20190616029 1 4 5 1 1 4 4 5 2 34 0 5 34 19 15 4 1 3 2 0 11 5 18 7 36 8 32 52
20190616028 1 2 4 1 2 3 4 2 1 33 0 4 33 18 14 3 0 2 1 5 10 4 17 6 35 7 31 51
20190616027 1 2 6 1 2 2 6 1 6 32 0 3 32 17 13 2 24 1 0 4 9 3 16 5 34 6 30 50
20190616026 1 2 5 1 2 1 5 5 2 31 0 2 31 16 12 1 23 0 42 3 8 2 15 4 33 5 29 49
20190616025 1 2 3 1 2 3 4 2 1 30 0 1 30 15 11 0 22 12 41 2 7 1 14 3 32 4 28 48
20190616024 3 3 6 4 1 3 2 3 1 6 29 1 0 29 14 10 4 21 11 40 1 6 0 13 2 31 3 27 47
20190616023 2 3 5 3 2 3 2 5 1 28 0 1 28 13 9 3 20 10 39 0 5 14 12 1 30 2 26 46
20190616022 2 6 6 2 2 2 1 3 6 2 27 2 0 27 12 8 2 19 9 38 3 4 13 11 0 29 1 25 45
20190616021 4 6 6 1 1 1 4 2 6 2 26 1 0 26 11 7 1 18 8 37 2 3 12 10 52 28 0 24 44
20190616020 1 2 3 1 2 3 4 1 2 25 0 3 25 10 6 0 17 7 36 1 2 11 9 51 27 16 23 43
20190616019 2 3 5 5 2 3 3 5 1 24 0 2 24 9 5 12 16 6 35 0 1 10 8 50 26 15 22 42
20190616018 2 3 6 4 2 3 2 1 6 23 0 1 23 8 4 11 15 5 34 12 0 9 7 49 25 14 21 41
20190616017 3 3 5 3 2 3 2 1 5 2 22 2 0 22 7 3 10 14 4 33 11 0 8 6 48 24 13 20 40
common.dataStatistical k3.kjDistribution k3.numberState k3.heTrend
1 2 3 4 5 6 k3.baoZi k3.sbt k3.duiZi 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
k3.totalCount 21 23 26 18 22 16 2 28 20 0 0 2 5 3 2 9 8 5 7 2 4 0 2 0 1
k3.maxCon 6 4 5 4 4 3 1 6 4 0 0 1 1 1 1 2 2 2 2 1 1 0 1 0 1
k3.maxMiss 5 7 6 6 5 7 35 4 8 71 56 24 19 30 24 42 12 20 14 29 52 73 28 69 53
k3.avgMiss 1 1 0 1 1 2 23 0 1 71 56 16 9 15 17 7 5 7 6 17 18 73 20 69 44
k3.lastMiss 1 1 0 2 2 1 0 1 4 71 56 8 7 30 15 0 5 10 2 6 16 73 28 69 35

k3.trendDesc0

k3.baseTrendDesc1

k3.baseTrendDesc2

k3.baseTrendDesc3

k3.baseTrendDesc4

k3.baseTrendDesc5k3.showAll

k3.baseTrendDesc6

k3.baseTrendDesc7

k3.baseTrendDesc8

k3.baseTrendDesc9

k3.baseTrendDesc10k3.packUp